
Automatic Crack Opening Displacement
Measurement Using Image Processing

Robert Sloan, Ekaterina Tsypkaikina, Lancelot Chen
School of Computer Science and Engineering

The University of New South Wales
Sydney, Australia

Abstract—Crack Opening Displacement (COD) measurement
is an important step for determining material properties. How-
ever, manual measurement is time consuming and labour inten-
sive. In this project, measurement of CODs using image pro-
cessing techniques is investigated. Preprocessing techniques are
trialled and an algorithm for calculating CODs from binarised
images was proposed and tested. Further work is needed to fully
verify the calculation algorithm and to find more suitable and
robust preprocessing methods.

Index Terms—crack opening displacement, image processing

I. INTRODUCTION

Assessment of engineering materials requires determining
the materials properties using available measurements. In
understanding fracture characteristics and cracking behaviour,
the crack opening displacement (COD) is an important metric
used for calculating various properties. The critical COD value
itself has been used extensively in the prediction of the onset
of crack initiation. Hence COD is an extremely useful metric,
in some cases being the only measurable parameter in fracture
tests. [1, 2]

COD is usually generated by using mathematical models
and finite element methods. [1]. It is also directly measured
using scanning electron microscopes (SEM). [3]. These meth-
ods are time consuming and labour-intensive. In this paper
the use of image processing techniques to automatically mea-
sure COD was investigated. Various preprocessing techniques
were trialled on SEM images, and an efficient algorithm for
measuring COD given an appropriately processed image was
developed.

The work presented provides a proof of concept of the
process, but further work will provide more functionality to
researchers using this application.

II. CRACK OPENING DISPLACEMENT

The crack opening displacement can be visualised as the
width of the crack at a given point along the length of the
crack, measured at 90 degrees to the axis of the crack. Since
the crack may not always travel in the same direction, as in
the case of a Vickers test, the direction of the crack must
be considered at the point of measurement. Fig. 1 shows the
necessary adjustments to be made when measuring in relation
to a global crack plane. 2δn is the relevant COD. [3]

Fig. 1. Crack diagram [3]

III. CURRENT RESEARCH

While crack identification has received much attention in
modern applications [4, 5], algorithms for crack quantification
are sparser, and currently undeveloped for the quantification
of COD.

Previous methods of crack detection have used a com-
bination of filters and thresholds to preprocess the images.
Commonly used filters and thresholds included the median
filter, Sobel filter, Laplacian of Gaussian filter [6], Canny edge
detection, and Otsu thresholding [4].

One effective crack detection method uses a ”percolation”
technique, where the crack is determined through the flow
of similar neighbouring pixels [5]. This method may also be
applicable to the cracks in our dataset. Convolutional neural
networks have also proven to provide accurate crack detection
[7], but due to the limited sample size of the dataset, more
traditional approaches for the crack detection algorithm were
used.

In one application, image processing techniques were used
in the quantification of cracks in chromium electrodeposits
[6], with the aim of providing an objective measure of the
crack area. The traditional approach has been to manually
and subjectively describe the crack area, but the use of image
processing allowed a consistent and objective method. Vidal
et al. tried various preprocessing techniques to enhance cracks
in their images, including Canny edge detection, Prewitt op-
erators and Laplacian of Gaussian (LoG) methods. They also



proposed their own thresholding function for binarisation of
the crack [6]. Enhancement of the crack image for binarisation
was also an important part of the method utilised in this
paper, so techniques used by Vidal et al. were also trialled
and evaluated.

IV. PROJECT SCOPE

The overall aim of this project was to find a method and
create an application which would automate the measuring of
COD. However, given the limited timeframe and challenges
met during the project, it was not possible to create a fully
working application. Therefore, our aims were revised to:

• Investigate available data and find an appropriate format
• Investigate image preprocessing techniques including

methods for noise removal, edge enhancement and thresh-
olding

• Create an algorithm for calculation of COD
• Provide proof-of-concept of the COD algorithm and

overall workflow
Further items that are being developed but have not been
complete are:

• GUI allowing manual selection of points to process and
processing single and multiple images

• Virtual stitching of images of a single crack to allow
querying points on the crack along a global axis

V. PROBLEM DECOMPOSITION

As the project scope evolved, the task was naturally broken
down into three major components.

1) Handling and parsing input data, including images and
scale informations

2) Preprocessing and binarisation of images
3) Calculation of COD from binary images

VI. DATA

Datasets used in this task comprised of series of SEM
images of cracks in various ceramics. An example of an image
is given in Fig. 2. These cracks were produced using a Vickers
indenter, and images at different magnifications were taken
along the length of the crack. In addition to the images, scale
information in the form of pixels per distance was provided, as
well as the COD and location of different points in the crack.
This information was contained in a spreadsheet.

Scale information was extracted from the spreadsheets
where possible and placed in a CSV file, which was parsed by
the developed application. Not all images had scale informa-
tion available. However, since some magnifications and their
corresponding distance per pixel values were provided, it is
possible to interpolate for the other magnifications.

It is important to note that the data was not taken with
automation of COD measurements in mind. Hence, the images
lacked global location information which would allow an
entire crack to be reconstructed in the application. The overlap
between images were also randomly chosen, using visual
features which were easy for the researcher to identify and
memorise when moving between images. As a result, they

Fig. 2. SEM image of section of crack

are not, and in some cases the overlap between images was
difficult to identify.

The points at which the COD were manually measured were
also chosen based on ease of measurement. Since COD is
measured at 90 degrees to the crack axis, only points where the
crack ran parallel to the direction of travel i.e. along the global
axis were considered for measurement. Furthermore, any areas
affected by crack bridging were excluded. For evaluation,
in order to compare automatic and manual measurements, a
manual selection of the points to measure with the algorithm
was required, by selecting the points with a graphical user
interface (GUI).

Further work will aim to reconstruct an entire crack from
a set of images. This will allow the user to specify any point
on a global axis along the length of the crack and find the
COD, without the use of a GUI. This will provide greater
automation of the process. However, to do this, the images
must be taken with a large amount of overlap. Ideally, the
amount of overlap should be a fixed amount, but if this is not
possible, feature detection using SURF can be performed and
matching descriptors found. For images of the same scale, a
Euclidean transformation matrix can be calculated using the
matching descriptors. Assuming no rotation of the specimen
or SEM, the translation and hence overlap can be found from
the transformation matrix. If the images are ordered, then by
taking the beginning of the first image as the origin, the crack
can be aligned on the global axis in consecutive images of
the same scale. Where the scale changes, the distance of the
beginning of the image from the beginning of the first image
will need to be manually measured and specified as additional
input data. From there the distances of points in following
images in the new scale can be calculated.



VII. PREPROCESSING

The goal of the preprocessing stage was to acquire a
binary image that accurately distinguishes the crack from the
background, as shown in Fig. 3.

Research on this subject showed several possible approaches
to the problem [4–7], including machine learning and tra-
ditional image processing. Machine learning and neural net-
works were not chosen due to the limited data sets available,
and because the continuously varying output of the application
was considered unsuitable for neural networks. Work per-
formed by Vidal et al. [6] was very relevant to this application,
and thus a simiar approach was taken to see how it would
perform on the available data.

The adapted algorithm first performed contrast adjustment
through histogram equalisation, after which the Laplacian
of Gaussian was applied, with an additional Prewitt edge-
detection filter in some cases. After this the image was
binarised based on a threshold calculated based on the output
image histogram [6].

The main issues that were encountered in this process arose
due to noise, which was heavily present in most cases. Using
too much blurring to remove the noise gave an incorrect
outline of the crack, leading to difficulties in detecting the
correct crack edges. In addition, the presence of crack bridging
effects meant that the crack was not always a single continuous
body, and that the main crack could consist of multiple smaller
entities. These needed to be distinguished from cracks that
were not part of the main crack body.

To address these issues, multiple experiments with param-
eter tuning were carried out, using additional filters such as
Sobel edge-detection, but the noise was almost always present
on the resulting image, as well as in some of the darker areas
of the image.

Based on additional research [8], a clustering approach was
chosen. A two-cluster separation of image pixels based on their
intensity, using k-means clustering, proved to be more flexible,
and additionally solving the issue of cracks in bridging areas.
It has also been noted that a brightness adjustment with the
addition of Gaussian blurring improves the result significantly.

This approach has proven to give considerably better results
than the previous thresholding method. However, it is still
highly affected by noise and the quality of the images; thus,
the parameters still require manual adjustment to fit different
cases, as the characteristics of the images vary throughout
the dataset. Dealing with noise and smaller cracks remains
a priority for future work, especially given the sensitivity of
the algorithm to the binarised image quality. It is also possible
to consider using contextual information to filter out unwanted
cracks, as it is known that the main crack elements are grouped
together and travelling along a vertical or horizontal axis.

VIII. CRACK OPENING DISPLACEMENT CALCULATION
ALGORITHM

A. Mid-point Calculation
If we let the mid-point of the crack be the average of the

top and bottom points along the y axis, we do not get the

Fig. 3. Example of crack image and its corresponding binary image

true centre of the crack because the crack curves and is not
aligned with a single axis. Finding centre points like this is
not rotation invariant and leaves large gaps in the line.

An acceptable centre line for the cracks can be found by
eroding the edges of the cracks until they converge. However,
simple erosion algorithms remove converging points, so we
wrote an algorithm to retain the converging points. The
algorithm iteratively processes each layer of each binarised
crack until only the converging centre points remain.

An initial pass of all pixels in the binarised image finds the
crack edges and adds each one to a queue for processing. And
then, iteratively until all the binary points have been processed:

• The points are checked for convergence (whether deleting
it will cause a separation between two parts of the crack).



If it converges, then it is saved as a converging point,
otherwise it is considered an edge point

• Then, the next layer (the neighbours of each non-
converging edge point) is added for processing, and the
current non-converging edge points are removed

This results in a collection of rotation-invariant centre points
for each of the cracks in the image, as seen in Fig. 4.

Fig. 4. Centre points in a crack derived from the erosion algorithm

B. Crack Opening Displacement Calculation

After finding the centre line of the crack, we approximate
a local gradient for points along the line by averaging the
gradients between a window of surrounding points. As the
crack may move in any direction, and the gradient may
therefore tend towards infinity, the gradient is implemented
as a (∆x,∆y) pair. From these points in the crack with
their corresponding local gradients, we can calculate the COD
information for each point.

From a given point, the algorithm steps along the perpen-
dicular gradient until it finds the top of the crack, and then
steps along the negative gradient until it finds the bottom.
The basic point-gradient form of a line is used to calculate
the step towards the top/bottom of the crack; if we take
y = m(x − x1) + y1, where m is the perpendicular gradient
−∆x/∆y, and (x1, y1) is a point in the crack, then we can
step along the line by incrementing or decrementing the x
position by 1. However, because we are working with discrete
x and y values, when m > 1, y may step by more than 1 pixel
each step, and may therefore overstep the edge and return an
inaccurately distant point, or it may step over a gap into the
bounds of another crack.

So,
• when m1 we step along the x axis, letting y = m(x −
x1) + y1,

• when m > 1 we step along the y axis, letting x = y−y1

m +
x1

Additionally,
• when ∆x = 0, we use y = y1 (to minimise computation),

and
• when ∆y = 0, we use x = x1 (to avoid dividing by

zero).
For each step along the gradient we check the value at

B(x, y). If this value is 0, then we have stepped off the crack
and can take the previous (x, y) point as the top or bottom of

the crack. From these top and bottom points we can simply
take the Euclidean distance to get the COD. Fig. 5 shows
the perpendicular gradients calculated along the length of the
crack.

Fig. 5. Perpendicular gradients calculated along length of crack

C. Complete Calculations

The processing step takes a binarised image of the cracks,
and returns the COD measurement, gradient, top, mid-point
and bottom for each centre point found in each crack in
the image. This preprocessing step can be computationally
expensive; on our 1024x943 images we found that average
calculation was approximately 5 seconds. Here we calculate
the COD for every point along the crack, but this full prepro-
cessing step could be exchanged for local real-time calculation
if only a selection of points were needed, and the dataset was
extensively large. Fig. 6 shows an example of the numerical
output that is produced by the calculations.

We also upscaled our images as part of the preprocessing
step to increase the samples taken and give smoother results.
This scale can be adjusted according to the computational
complexity of the image.

Many of the algorithms we implemented can be optimised
to be several times faster through implementing native C calls,
leveraging parallel processing or improving the algorithms.
Most of our unoptimized algorithm checks values pixel for
pixel in Python causing it to be slower than necessary.

IX. RESULTS

In evaluating our algorithms, we relied heavily on visual
inspection. Calculations for given, uncalculated points were
found by approximating the gradient based on surrounding
measurements within a given window, and those points were
visualized in our testing framework. With more time, we
would like to integrate the entire dataset to measure our
results quantitatively and see which areas of our method needs
improving.

A direct comparison of results from the recorded dataset
and our recorded results for the same points is show in Fig.



Fig. 6. Calculated COD at each gradient

7, where human recorded displacements are in blue, and com-
puter recorded in orange. There is clearly a strong correlation
between points; we believe the error in measurements may be
from the calculated threshold only taking the interior of the
crack, where the human recorded points included the sides of
the crack.

Fig. 7. Results of the algorithm compared with manual measurements

Varying the thresholding also led to changes in the re-
sults. Fig. 8 shows the results of the algorithm with a good
threshold which produces accurate binarisation, while Fig.
9 demonstrates poor thresholding leading to larger errors in
measurements. It is clear the quality of the results is highly
dependent on the preprocessing steps. Thus, because of our
current preprocessing method, the results are highly affected
by the input images themselves and are not consistent across
varying conditions.

X. DISCUSSION

The current method effectively calculates the rotationally-
invariant displacement of a binarised crack image. The closer
the binarised crack shape is to the original, the higher the
accuracy of the results. Thus, the preprocessing parameters
directly affect the performance of the algorithm. The current

Fig. 8. Results of the algorithm with good thresholding

Fig. 9. Results of the algorithm bad thresholding

implementation still needs work in effectively determining
the binarised crack shape. Some cracks in the dataset are
defined by a black outline, but others are defined by white, so
thresholding based on intensity is not adaptive enough for this
dataset. In addition, shadows and noise such as those present
in Fig. 10 affect the binarisation process, leading to poorly
defined cracks and false positives outside of the main crack
body. The binarisation algorithm will need a more generalised
shape detection method to identify the crack edges before
thresholding. However, while the preprocessing step requires
human verification and input to find an effective outline, this
may be automated once an adaptive outlining algorithm is
implemented.

In addition to determining the COD, it may be possible to
identify other elements of the crack using computer vision



Fig. 10. Example of image with noise and unclear crack edges

techniques, such as the crack tip and length of the crack.
However, to identify the crack tip, a considerably more sophis-
ticated algorithm would need to be developed. The crack tip is
identifiable mostly through context, rather than any features of
its own. Within one image there may be many cracks of equal
or larger size than the real tip, so it is necessary to follow the
crack along its trajectory to find its tip. Context information
may also be useful for removing outliers and identifying a
more accurate COD.

Collecting data points through human input is time expen-
sive. It also results in a limited selection of points that are
prone to human error, are not reproducible, and require a
higher error tolerance in evaluation. This method can automat-
ically collect thousands of data points in a few seconds. With
the increased amount of data, linear regression can be used
to evaluate the change in position or displacement with more
accuracy than before. With further improvements to the crack
identification algorithms, this method of information extraction
could provide results otherwise impossible to measure by
hand, in an efficient, reproducible manner.

XI. FUTURE WORK

To meet the original project goals, further work remains to
be done. This work will be focused on:

• Improving the preprocessing techniques and finding a
robust method that will handle different conditions

• Creating new datasets which are suitable for generating a
single linked dataset of a crack to allow querying along
its length

• Further testing and evaluation
• Completion of the GUI and scripting interfaces

XII. CONCLUSION

While the project did not lead to a complete application,
the goals defined in the project scope were met. The COD
calculation algorithm was proven to work, with preprocessing
being the determining factor in the results success. Available
data was investigated, and a suitable format was found. Over-
all, the workflow was shown to be effective, and with further
work, it is believed the application will be successful.

XIII. ACKNOWLEDGMENT

Data, including images and measurements, were provided
by Carina Tanaka from the School of Mechanical and Manu-
facturing Engineering at The University of New South Wales.
We are grateful for her generous assistance in explaining the
data for us. Further, the idea for this project was developed
with input from Professor Jamie J. Kruzic, also from the same
department.

REFERENCES

[1] H. Yi, C. Jingjie, L. Gang, et al., “A new method
of crack-tip opening displacement determined based
on maximum crack opening displacement,” Engineering
Fracture Mechanics, vol. 78, no. 7, pp. 1441–1451, 2011.

[2] C. Shih, “Relationships between the j-integral and the
crack opening displacement for stationary and extending
cracks,” Journal of the Mechanics and Physics of Solids,
vol. 29, no. 4, pp. 305–326, 1981.

[3] S. Fünfschilling, T. Fett, R. Oberacker, et al., “Crack-tip
toughness from vickers crack-tip opening displacements
for materials with strongly rising r-curves,” Journal of
the American Ceramic Society, vol. 94, no. 6, pp. 1884–
1892, 2011.

[4] A. M. A. Talab, Z. Huang, F. Xi, et al., “Detection
crack in image using otsu method and multiple filter-
ing in image processing techniques,” Optik-International
Journal for Light and Electron Optics, vol. 127, no. 3,
pp. 1030–1033, 2016.

[5] T. Yamaguchi, S. Nakamura, and S. Hashimoto, “An
efficient crack detection method using percolation-based
image processing,” in Industrial Electronics and Applica-
tions, 2008. ICIEA 2008. 3rd IEEE Conference on, IEEE,
2008, pp. 1875–1880.

[6] M. Vidal, M. Ostra, N. Imaz, et al., “Analysis of sem
digital images to quantify crack network pattern area in
chromium electrodeposits,” Surface and Coatings Tech-
nology, vol. 285, pp. 289–297, 2016.

[7] Y.-J. Cha, W. Choi, and O. Büyüköztürk, “Deep learning-
based crack damage detection using convolutional neural
networks,” Computer-Aided Civil and Infrastructure En-
gineering, vol. 32, no. 5, pp. 361–378, 2017.

[8] N. Dhanachandra, K. Manglem, and Y. J. Chanu, “Im-
age segmentation using k-means clustering algorithm
and subtractive clustering algorithm,” Procedia Computer
Science, vol. 54, no. 2015, pp. 764–771, 2015.



XIV. WORK DISTRIBUTION

• Robert Sloan (33%) - COD calculation algorithm: 3
weeks

• Ekaterina Tsypkaikina (33%) - Preprocessing: 2.5 weeks,
GUI: 0.5 weeks

• Lancelot Chen (33%) - Data sorting and filtering - 2
weeks, Input parsing: 0.5 weeks, Final report: 0.5 weeks


